Tuesday, October 29, 2013

The History of Innovation

It is important to review history to understand how radical innovation works with technology to transform people's perception and create new previously unexpected opportunities. In the recent post I talked about how an evolution of engine made it possible an evolution of the modern aviation. But there is another, crucial component of an aircraft, without which the machine would be useless - its control. It is what allows an airplane to ascent, change direction, stay in flight and safely land. Ability to control an airplane was in fact a real innovation of Wright brothers - and not the invention of an airplane as many may believe.












      Interestingly, in a speech to the Aero Club of France, 5 November 1908 Wilbur Wright admitted: "I confess that in 1901, I said to my brother Orville that man would not fly for fifty years. . . . Ever since, I have distrusted myself and avoided all predictions". How things change! The next year already Wrights became engaged in the legal fight for establishing their priority of the first controlled flight and anything related to it. Their opponents derisively suggested that if someone jumped in the air and waved his arms, the Wrights would sue him ...

Today we are talking about the "Internet of Things" (IOT). The term was was coined in 1999, but Mark Weiser at Xerox PARC with John Seely Brown led visionary research in the late 1980's on what is now called the IOT and used the term "ubiquitous computing" as the third generation of computing. Their paper, "The Computer for the 21st Century", was published in the September 1991 issue of Scientific American. In the early 1990's, Steelcase from Grand Rapids, Michigan built and patented several inventions of what is now called IOT before becoming a charter founding member of the M.I.T. consortium called "Things That Think" (TTT) created in 1995. Start-up companies such as Echelon were founded in the early 1990's to commercialize IOT technology. GE changed their business model to a manufacturing/service model and began building products with embedded networked "smarts" in the 1990's and recently identified the "industrial Internet" as a $32 trillion opportunity. GM launched OnStar(tm) in the 1990's. IBM now promotes the concept of  "smart planet".

Today radical innovations are built with a new fourth generation of innovation theory and practice that replaces the linear stage model with an iterative nonlinear model. The linear model is only effective for incremental innovations within the dominant design (DD) that governs an industry or market. 4G creates a new dominant design. It was first described in the 1998 book, Fourth Generation R&D.  The USA Department of Energy is now practicing these principles which is Innovation Hubs. A similar concept is utilized in the Research and Innovation Centre concept at the newest Russian University Slolkovo Tech  set up by M.I.T. Economics changes with 4G to replace neoclassical and Keynesian economics with "Innovation Economics". 4G changes financial accounting to measure both tangible and intangible capital. 4G is based on capabilities which are built as people garner knowledge, tools, technologies and processes. It is a natural extension of the principles exercised by Systems Architecture.

Systems Architecture is concerned with formal tools and methods to define the elements and their interfaces of complex, large-scale technical and non-technical systems. It helps to structure and link the capabilities to build new technologies, organizations, business models and infrastructures.

No comments:

Post a Comment